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a b s t r a c t

The development of chitosan-based materials as useful adsorbent polymeric matrices is an expanding
field in the area of adsorption science. Although chitosan has been successfully used for the removal
of dyes from aqueous solutions, no consideration is given to the removal of dyes from contaminated
soils. Therefore this study focuses on the potential use of chitosan as an in situ remediation technology.
The chitosan beads were used as barriers to the transport of a reactive dye (Reactive Black 5, RB5) in
soil column experiments. Batch sorption experiments, kinetic and equilibrium, were performed to esti-
mate the sorption behavior of both chitosan and soil. The chitosan beads were prepared in accordance
with published literature and a synthetic soil was prepared by mixing quantities of sand, silt and clay.
orption
ye

The synthetic soil was classified according to British Standards. Calcium chloride was used as tracer to
define transport rates and other physical experimental parameters. Dye transport reaction parameters
were determined by fitting dye breakthrough curves (BTCs) to the HYDRUS-1D version 4.xx software.
Fourier Transform-Infra Red (FT-IR) spectroscopy was used to reveal the sorption mechanism. The study
showed that chitosan exhibited a high sorption capacity (Smax = 238 mg/g) and pseudo-first sorption rate

−1 ith lo
React
(k1 = 1.02 h ) coupled w
potential as a Permeable

. Introduction

Azo dyes represent the largest class of dyes applied in textile
rocessing. The degree of fixation of dyes to fabrics is never com-
lete, resulting in dye-bearing effluents. The removal of dyes from
hese effluents is desired, not only for aesthetic reasons, but also
ecause many azo dyes and their breakdown products are toxic to
quatic life and mutagenic to humans [1,2].

Several methods have been developed to remove color from
ye-house effluent, varying in effectiveness, economic cost and
nvironmental impact. Traditionally, biological treatments using
ctivated sludge have been used. They can reduce Biological Oxy-
en Demand, but do not effectively remove color, as the oxidation
ate is very slow [3]. Sorption of dye molecules onto a biosorbent
an be a very effective, alternative to activated carbon, low cost
ethod of color removal [4].
Numerous studies have investigated either the sorption of dyes
o various low cost sorbents as a wastewater treatment method
5,6] or the use of dyes as tracers for soil hydrology [7]. However,
here is no special mention about the fate of unsuccessfully treated
yes in soils and potential in situ clean-up technology.

∗ Corresponding author. Tel.: +30 32310 997807; fax: +30 32310 997859.
E-mail address: nlazarid@chem.auth.gr (N.K. Lazaridis).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.08.062
w swelling and increased retardation for the azo dye tested. Thus it has
ive Barrier (PRB) for containment and remediation of contaminated sites.

© 2009 Elsevier B.V. All rights reserved.

To date, mostly conventional remediation technologies (e.g.,
pump-and-treat systems) have been applied for the clean up of
contaminated groundwater. Even after many years of operation,
however, it has proven difficult and costly to meet clean-up stan-
dards. Lately, there has been an explosion of activity directed at the
development and implementation of Permeable Reactive Barriers
(PRBs) also known as treatment walls [8,9]. PRBs involve construc-
tion of permanent, semi-permanent or replaceable units across the
path of a dissolved phase contaminant plume [10]. PRBs constitute
a semi passive, in situ remediation technology that utilizes reactive
media which cause physical/chemical or biochemical reactions to
transform or immobilize contaminants.

The media for physical reactions are evaluated based on: (i)
high sorption capacity; (ii) sufficiently rapid rates; (iii) negligible
desorption and (iv) the ability to maintain adequate permeabil-
ity and reactivity over a long time period. Iron metal is the most
frequently utilized medium, accounting for approximately 45% of
PRBs. However, a significant drawback is the oxidation of iron and
precipitation of oxides that may clog the pore space [8].

The purpose of this study was to assess chitosan beads as poten-
tial barriers to the transport of azo dye in soil column. Chitosan is

derived from chitin one of the most abundant natural biopolymers.
Chitin itself is mostly found in the exoskeletons of crustaceans, mol-
luscs and in the cell walls of micro-organisms; however chitosan
produced by the de-acetylation of chitin produces a more adsor-
bent material [11]. It is known that chitosan is an effective sorbent

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:nlazarid@chem.auth.gr
dx.doi.org/10.1016/j.jhazmat.2009.08.062
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Table 1
Particle size analysis of artificial soil and chitosan beads.
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Material D0.1 (�m) D0.5 (�m) D0.9 (�m)

Soil 91 787 1366
Chitosan 64 452 868

or most dye classes [12]. The chitosan beads used in this study,
ith a low swelling percentage, were prepared by a novel cross-

inking procedure and were found effective for the sorption of dyes
n previous batch experiments [13].

. Experimental

.1. Materials

High-molecular weight chitosan (Ch) was obtained from
igma–Aldrich and purified by extraction with acetone in a Soxh-
et apparatus for 24 h, followed by drying under vacuum at room
emperature. The average molecular weight was estimated to
e 3.55 × 105 and the degree of de-acetylation was 82 wt%. Glu-
araldehyde (GA, 50 wt% in water, Sigma–Aldrich) was used in the
reparation of the beads. The tracer calcium chloride-2 hydrate
as purchased from BDH. The reactive azo dye Reactive Black 5

C26H25O19N5S5) was kindly supplied by Dye Star. The maximum
bsorption wavelength for the dye solutions was determined by
unning full-range wavelength scans. Fig. 1 presents the chemical
tructure of Reactive Black 5.

Chitosan beads were prepared according to previously pub-
ished work [13]. Briefly, 0.5 g chitosan was dissolved in 50 mL of an
queous 2% (v/v) CH3COOH solution. The solution was added drop
ise from a pipette into an aqueous solution of GA 5.01 g/L, which

lso contained 5.00 g tripoly phosphate (TPP) at pH 6, adjusted with
n aqueous HCl solution. The formed gelled microspheres were
tirred overnight at room temperature in the aforementioned solu-
ion. Then, they were filtered and purified by extraction with water
n a Soxhlet apparatus for 24 h. The drying of beads was carried out
t 323 ± 1 K.

The synthetic soil material was prepared by mixing sand, silt and
lay. The sand was commercial British sand. Silt was taken from a
ank of the river Clyde, 15 km from Glasgow. The clay, classified
s stiff clay, was excavated from the Hallyard Quarry 30 km from
lasgow. The mixing of the three constituents was done in the ratio,
and:silt:clay (85:10:5).

A particle size micro-analyzer (Malvern Master Sizer 2000) was
sed to determine the particle size distribution of the simulated
oil and chitosan, by laser light scattering. Average particle size was
xpressed as the volume mean diameter (D4,3). D0.9, D0.5 and D0.1
re the particle diameters determined respectively at the 90th, 50th
nd 10th percentile of undersized particles. The results are given
n Table 1. The simulated soil could be classified as loamy sand soil
ccording to British Standards [14].
FT-IR spectra of pure soil components and chitosan along
ith the respective dye-loaded materials were obtained by a

erkinElmer FT-IR spectrophotometer, model Spectrum 1000, in
he range of 4000–500 cm−1 using KBr pellets containing the pre-
ared materials. The resolution for each spectrum was 2 cm−1 and

Fig. 1. Chemical structure of t
Fig. 2. Experimental set-up.

the number of co-added scans was 64. The spectra presented are
baseline corrected and converted to the absorbance mode.

2.2. Batch equilibrium/kinetic experiments

For equilibrium experiments, a constant amount of soil or chi-
tosan was mixed with 25 mL of various initial dye solutions (pHin
6.5) into glass vials [15]. For kinetic experiments, 2.5 g soil or 0.025 g
chitosan were mixed with 25 mL of 20 mg/L or 100 mg/L dye solu-
tions into glass vials. The background electrolyte was 0.01 mol/L
CaCl2, according to the OECD Test Guideline 106 [16], and the final
pH 5.50 ± 0.50. The CaCl2 solution is used as the aqueous solvent
phase to improve centrifugation and minimize cation exchange
of the soil. The slurries were agitated by rotation of the vials top
to bottom (1.5 rps) at constant temperature (293 ± 1 K) for pre-
determined time intervals. After completion of agitation (24 h for
equilibrium experiments), the vials were centrifuged at 1700 rpm
and aliquots were removed and analyzed. Each experiment was
replicated 3 times.

2.3. Column dynamic experiments

A Teflon (polytetrafluoroethylene, PTFE) column (Fig. 2) with
a diameter of 2.6 cm was packed with 110 g dry soil to a length
of approximately 12 cm. The column was saturated from the bot-
tom up, over 24 h, using a solution of 0.01 mol/L CaCl2. After the

column was saturated, and steady state flow was achieved, three
breakthrough curves (BC) were run at a flow rate of 42 cm3/h [17]:
(i) Tracer–Soil BC: a solution pulse of 0.05 mol/L CaCl2 was intro-
duced to characterize the transport (hydrodynamics) through the
column. Following completion of the non-reactive pulse, the col-

he dye Reactive Black 5.
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Fig. 3. Equilibrium data for the systems soil–reactive dye and chitosan–reactive dye.
Solid lines present Langmuir–Freundlich equation.

Table 2
Comparison of adsorption capacities of various sorbents for Reactive Black 5.

Adsorbent Smax (mg/g) Reference

Chitosan 1000 [19]
Chitosan 936 [20]
Mesoporous activated carbon 600 [21]
Corynebacterium glutamicum 419 [22]
Chitosan beads 238 This study
Modified polymeric sorbent 159 [23]
Surfactant modified activated carbon 129 [24]
Dried activated sludge 116 [25]
Furnace slag 109 [26]
Aspergillus foetidus 106 [27]
Powder activated carbon 59 [28]
Barley straw 25 [29]

3.2. Batch kinetic experiments

Fig. 4 depicts the effect of contact time on the sorption behav-
ior of the simulated soil and chitosan beads. For materials, the
46 N.K. Lazaridis, H. Keenan / Journal of

mn was flushed with 0.01 mol/L CaCl2 to elute the tracer from the
olumn; (ii) Dye–Soil BC: a solution pulse of 30 mg/L dye was intro-
uced to determine retention behavior of dye by the soil column.
ollowing completion of the dye pulse, the column was flushed
ith 0.01 mol/L CaCl2 to elute the dye from the column and (iii)
ye–Soil/Chitosan BC: in this case, chitosan beads (4 g) were placed
t the top of the column. After the column was saturated, and steady
tate flow was achieved, a solution pulse of 30 mg/L dye was intro-
uced to determine retention behavior of dye by the soil/chitosan
olumn. In all cases, effluent samples were collected periodically
nd analyzed.

.4. Analysis

Reactive (dye) and non-reactive (chloride) samples of the solu-
ions were collected at various time intervals and analyzed using
UV–Vis spectrophotometer (UV/Vis 6405, Jenway) and a conduc-

ivity meter (PCM3, Jenway), respectively. The effect of pH over the
alibration curve of dye was studied prior to the sorption experi-
ents, as the �max of the dye solution may be pH dependent, but

o significant deviation was observed. The amount of dye sorbed,
(M/M), was calculated using the mass balance equation:

= (C0 − C)V
m

(1)

here C0 (M/L3) is the initial solute concentration, V (L3) is the
olume and m (M) mass of the sorbent.

. Results and discussion

.1. Batch equilibrium experiments

The movement of a sorbing solute is retarded relative to the
ean water flow because of partitioning of the solute between the

iquid and the solid phase, so that

T = �C + �bS (2)

here CT (M/L3) is the total solute concentration, � the effective
olumetric content of the soil (L3/L3), �b (M/L3) is the bulk density.

Assuming equilibrium interaction between the solution con-
entration Ce (M/L3) and sorbed concentration Se (M/M), then
he sorption isotherm is described by a generalized non-linear
angmuir–Freundlich equation of the form [18]:

e = Smax�Cˇ
e

1 + �Cˇ
e

(3)

here Smax (M/M) is the maximum sorption concentration; �
L3/M)1/ˇ is a constant and ˇ (−) is the heterogeneity constant.

Equilibrium experiments are a prerequisite to understand the
ye–solid interaction. Equilibrium data for soil and chitosan are
iven in Fig. 3. There is an initial steep ascent which is fol-
owed by a slower approach until a plateau is reached. The
ata were successfully correlated (R2 > 0.995) with the non-linear
angmuir–Freundlich equation. It is easily observable the low affin-
ty of the reactive dye for the soil (Smax = 0.017 mg/g) and the strong
ne for the polymeric matrix (Smax = 238 mg/g). Table 2 presents the
dsorption capacities of various sorbents for Reactive Black 5. Chi-
osan beads exhibit a significant high capacity, but not the highest.
owever, a direct comparison among materials could be mislead-
ng because of the different applied experimental conditions. In
his study, experiments have been performed (i) at pH 5.50 ± 0.50,
hich is not optimum (pHopt 2.0) and (ii) in the presence of

ackground electrolyte (0.01 mol/L CaCl2), which also reduces the
orption loading [32]. On the other hand, high sorption capacity
Fly ash 8 [30]
Biomass fly ash 4 [28]
Sunflower seed shells 1 [31]

does not guarantee the proper mechanical and swelling behavior
of sorbents as reactive barriers.
Fig. 4. Batch kinetic data for the systems soil–reactive dye and chitosan–reactive
dye. Solid lines present the modified second-order kinetic model.
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Table 3
Parameters of the three kinetic models for the adsorption of RB5 onto chitosan and soil.

Material Pseudo-first order Pseudo-second order Modified second order

k2 (h−1) R2 km (h−1) R2

1.88 0.989 1.94 0.990
2.51 0.959 3.17 0.979
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k1 (h−1) R2

Chitosan 1.02 0.984
Soil 1.38 0.956

igh sorption rates at the beginning of adsorption followed by
flat plateau (saturation values) and equilibrium were reached

t approximately 5 h. The collected data sets were fitted to the
seudo-first order model (Eq. (4)), the pseudo-second order model
Eq. (5)) and the modified second order model (Eq. (6)) [33,34]

= Se(1 − e−k1t) (4)

= Se
(

1 − 1
1 + k2t

)
(5)

= Se
(

1 − 1
ˇ2 + kmt

)
(6)

here ˇ2 is a parameter of the modified second order model and k1,
2, km are the sorption rate coefficients (h−1) for the pseudo-first,
he pseudo-second and the modified second order model, respec-
ively. The resulting kinetic parameters are given in Table 3, while
he respective Se values have been determined experimentally. The
dsorption rates show that chitosan and soil present approximately
he same sorption rate but with a vastly difference in the sorp-
ion loading. A high correlation obtained between the experimental
ata and all kinetic models. Precisely, the highest correlation was
chieved by the modified second order because of the extra degree
f freedom (ˇ2), which makes the model more flexible.

Equilibrium and kinetic data analysis was performed using non-
inear least-square fitting. A Levenberg–Marquardt algorithm was
sed to iteratively search for the parameters that best fit the data,
etermined by minimization of the �2 value [35].

.3. Column dynamic experiments

The tracer and dye displacement experiments were inversely
odeled using the program HYDRUS-1D version 4.xx [36]. This

nverse model routine uses a least-squares method that minimizes
n objective function, which provides a best-fit model solution to
he measured transport data. The best-fit model solution to the
ransport data is obtained by finding the optimum combination of
eaction and transport parameters [37].

Fig. 5a illustrates the measured and fitted breakthrough curves
or the tracer in the soil column. The recorded data were almost
ymmetrical indicating an ideal transport behavior. Soil hydraulic
haracteristics were estimated by employing pedotransfer func-
ions (PTFs) that use widely available basic soil data (texture, bulk
ensity, etc.) as predictors. Rosetta, a build in HYDRUS file, imple-
ents PTFs to predict water retention parameters and saturated

ydraulic conductivity (Ks) by using textural class, textural distri-
ution, bulk density. The estimated parameters were used for the
est of experiments.

Fig. 5b and c depicts the measured and fitted breakthrough
urves for the dye in the absence and presence of reactive barrier.
arious sorption concepts are available to describe the interac-

ion of dissolved substances with the solid material. These sorption
oncepts differ with respect to the involved sorption isotherm
linear or non-linear), the assumptions made concerning the time-

ependency (instantaneous or rate-limited) and reversibility of the
orption process (reversible or irreversible) [38].

The non-equilibrium transport models are divided into three
roups: (i) physical, (ii) chemical and (iii) physical and chemical
on-equilibrium transport. After testing, the chemical non-

Fig. 5. Measured and predicted breakthrough curves for: (a) Cl− in soil column; (b)
dye in soil column; (c) dye in soil column equipped with a chitosan treatment wall.
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quilibrium employing the attachment–detachment approach was
sed to describe effectively the transport data. In this case,
he relatively standard advection–dispersion transport equation
ADE—Eq. (7a)) is supplemented with Eq. (7b) describing the
ttachment–detachment of a solute:

∂C

∂t
+ �b

∂Sk

∂t
= �D

∂2C

∂x2
− q

∂C

∂z
(7a)

b
∂Sk

∂t
= �ka1C − �bkd1Sk (7b)

here Sk (M/M) is the sorbed concentration of the kinetic sorp-
ion sites, q (L/T) is the volumetric water flux density, D (L2/T)
s the global dispersion coefficient accounting for both molec-
lar diffusion and hydrodynamic dispersion and ka1/kd1 are the
ttachment/detachment rate coefficients (h−1). The global disper-
ion coefficient is given by the relationship D = �� + D0, where � is
he dispersivity (L) and D0 the molecular diffusion coefficient. The
olute transport equations were solved using the Galerkin finite
lement method with a Crank-Nicholson time weighting scheme.

The mean travel times of the conservative (	c) or partitioning
	p) solutes were determined from moment analysis of the break-
hrough curves [39]:

=
∫ tF

0
tCdt∫ tF

0
Cdt

− tp

2
(8)

here tF is the time the solute measurements were terminated
nd tp is the duration of pulse input. The retardation factor, R, was
alculated from the following equation

= 	p

	c
(9)

The resulted transport parameters for the dynamic experiments
re given in Table 4. One may discern the impact of chitosan reac-
ive barrier in the breakthrough curves of soil column. Chitosan
esulted in a significant increase in the retardation factor (∼80
imes), an increase in the attachment rate (∼7 times) and decrease
n the detachment rate (∼56 times). The latter is consistent with
atch desorption experiments of loaded chitosan which showed
n almost irreversible sorption behavior.

The amount of dye retained by chitosan (mret = 269.4 mg) was
etermined by subtracting the eluted mass (mout = 473.8 mg),
hich was determined by integrating under the breakthrough

urve, from the total injected mass of dye (mtot = 743.4 mg). There-
ore, the resulting sorption capacity of chitosan beads is 65.85 mg/g.
he latter value shows a 3-fold decrease in the predicted adsorp-
ion maximum from batch experiments. This behavior is consistent
ith previously reported. In general, batch processes do not dupli-

ate the hydrodynamic conditions of fixed-bed. Greater adsorption
n batch compared to flow system is commonly reported in the lit-

rature [40]. The discrepancy implies mass transfer limitations due
o shallow layer of chitosan which causes uneven flow patterns.
owever, a longer barrier layer bounded on down gradient side by
thin section of sand could improve flow and subsequently the

dsorption capacity.

able 4
ransport parameters for the dynamic experiments (�b = 1.74 g/cm3, � = 0.343).

Solute Sorbent � (cm) ka1 (h−

Tracer Soil 1.2 ± 0.1
Dye Soil 1.2 ± 0.1 3.0 ±
Dye Soil + Chitosan 1.2 ± 0.1 20.8 ±
(B) clay; (C) dye-loaded clay; (D) sand; (E) dye-loaded sand; (F) silt; (G) dye-loaded
silt; (H) chitosan beads; (I) dye-loaded chitosan beads; (J) pure commercial chitosan.

3.4. Sorption mechanism

The comparison of the FT-IR spectra of the soil components and
chitosan (dye-loaded and non-loaded) is given in Fig. 6. It is clear
that the chitosan beads present shifts in their peaks before (non-
loaded materials) and after sorption (loaded materials). Firstly, a
comparison was realized between the FT-IR spectrum of the pure
commercial chitosan (J) and the respective cross-linked chitosan
beads (non-loaded material) (H). In particular, the amide I and II
adsorption bands of chitosan are situated at 1663 and 1556 cm−1

(J), respectively. The amide II band overlaps the asymmetric –NH2
bending band at ∼1590 cm−1, the presence of which is confirmed
by the adsorption at 1420 cm−1, which is related to the presence of
–NH2 groups. The absorption bands at 1133 (asymmetric stretch-
ing of the C–O–C bridge), 1090 and 1005 cm−1 (skeletal vibrations
involving CO stretching) are characteristic of the polysaccharide
structure of chitosan [41]. The broad band at ∼3300 cm−1 is
attributed to the stretching vibration of O–H, extension vibration
of N–H and inter-hydrogen bonds of the polysaccharide. The pres-
ence of the P O groups in cross-linked chitosan beads is indicated
by the peak at the frequency of 1158 cm−1 (H). Furthermore, a broad
shoulder that appears around ∼2500 cm−1 can be assigned to the
–NH2

+ band [42]. The appearance of a strong peak at 1660 cm−1

corresponds to the imine moiety formed as a result of the reac-

tion between the free amino groups on the chitosan backbone
and the aldehyde groups of the cross-linker (glutaraldehyde). The
carbonyl group of the free unreacted end of some glutaraldehyde
molecules results in the observed shoulder at 1713 cm−1. The peak

1) kd1 (h−1) R (−) R2

– – 1.0 0.984
0.05 2.8 ± 0.06 2.1 0.996
0.6 0.050 ± 0.001 160 0.995
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f the ether group becomes stronger and is shifted to 1075 cm−1,
uggesting the formation of a new open chain ether linkage after
he cross-linking [43]. Moreover, observing the spectrum of the
oaded chitosan beads (I), the most characteristic peak of chitosan
carbonyl peak) presented a shift from 1660 (H) to 1658 cm−1

I). Besides, the peak of the phosphate ions (originated from the
ripolyphosphate sodium used as ionic cross-linker) was shifted
rom 1075 (H) to 1067 cm−1 (I). A presence of a strong peak at
480 cm−1 (I) was observed, which is attributed to the interac-
ion of dye molecule with the chitosan backbone. In this pH range,
he interaction could be attributed to a combination of electro-
tatic interactions, van der Waals forces and hydrogen bonding
13].

On the contrary, the soil components clay, sand and silt did
ot present significant shifts of their FT-IR peaks. Only clay pre-
ented a significant shift of their peaks before and after sorption.
he broad band at 1022 cm−1 of non-loaded clay (B) was replaced
y a sharp and intense peak with higher absorbance at 1020 cm−1

C). The other two components (sand and silt) illustrated the same
T-IR spectra before (Spectra D and F) and after sorption (Spectra
and G), respectively, suggesting that there is not any sorption

henomenon, but only random positioning of the dye molecule on
he surface of the material. In general, the anionic dye molecule

ay bind to the unspecific anion exchange sites in soil. Such sites
re situated on the (hydr)oxides of iron and aluminum as well as
t the edges of clay minerals (aluminol and silanol groups). As the
H of many soils is below their point of zero charge, iron and alu-
inum (hydr)oxides may serve as appropriate sorbents for anionic

yestuffs [44].

.5. Economic aspect

Capital cost of installing PRBs is a concern especially with
he cost of zero-valent iron, which is usually utilized as the
roper medium. Iron nanoparticles a great extension of conven-
ional zero-valent iron technology is moving rapidly to challenge
lean-up problems. The price of nanoscale zero-valent iron has
ecreased in the past due to a decrease in the price of raw
aterials. Prices for 1000-pound quantities or more vary from
S$ 22–77/pound, depending on the quantity and quality [45].
n the other hand, bulk prices for chitosan vary significantly.
he demand for chitosan has grown remarkably and production
ites have been established in many countries worldwide. About
–4 million pounds of chitosan could be produced at a cost of
S$ 1.00–2.00/pound [46]. Another conservative estimation, of

he Planning Department of Uttar Pradesh, India, for chitosan is
S$ 4.5–5.2/pound [47]. Given that the process of making chi-

osan beads is not expensive, one could assume that the cost
f chitosan is affordable. However, its potential applicability as
reatment wall should be previously tested in large scale imple-

entations.

. Conclusions

In the present investigation, chitosan beads were prepared and
valuated as reactive barriers in the transport of the azo dye
B5 in a soil column. Chitosan beads presented (i) high sorp-
ion capacity (Smax = 238 mg/g), (ii) high pseudo-first sorption rates
k1 = 1.02 h−1) and (iii) increase in the retardation factor of soil
oughly 80 times. Taking into account the previous characteristics

f chitosan beads along with their low swelling (∼35%), irreversibil-
ty and permeability over long time, it seems possible that they
ould be used as physical PRBs. A challenge would be the possi-
ility of extending their application into chemical and biochemical
ransformations.
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